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Abstract Random forest (RF) modeling has emerged
as an important statistical learning method in ecol-
ogy due to its exceptional predictive performance.
However, for large and complex ecological data sets,
there is limited guidance on variable selection meth-
ods for RF modeling. Typically, either a preselected
set of predictor variables are used or stepwise proce-
dures are employed which iteratively remove variables
according to their importance measures. This paper
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investigates the application of variable selection meth-
ods to RF models for predicting probable biological
stream condition. Our motivating data set consists of
the good/poor condition of n = 1365 stream sur-
vey sites from the 2008/2009 National Rivers and
Stream Assessment, and a large set (p = 212) of land-
scape features from the StreamCat data set as potential
predictors. We compare two types of RF models: a
full variable set model with all 212 predictors and
a reduced variable set model selected using a back-
ward elimination approach. We assess model accuracy
using RF’s internal out-of-bag estimate, and a cross-
validation procedure with validation folds external to
the variable selection process. We also assess the sta-
bility of the spatial predictions generated by the RF
models to changes in the number of predictors and
argue that model selection needs to consider both
accuracy and stability. The results suggest that RF
modeling is robust to the inclusion of many variables
of moderate to low importance. We found no sub-
stantial improvement in cross-validated accuracy as a
result of variable reduction. Moreover, the backward
elimination procedure tended to select too few vari-
ables and exhibited numerous issues such as upwardly
biased out-of-bag accuracy estimates and instabilities
in the spatial predictions. We use simulations to fur-
ther support and generalize results from the analysis
of real data. A main purpose of this work is to eluci-
date issues of model selection bias and instability to
ecologists interested in using RF to develop predictive
models with large environmental data sets.
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Introduction

Ecological processes are complex and often involve
high-order interactions and nonlinear relationships
among a large collection of variables (De’ath and
Fabricius 2000; Cutler et al. 2007; Evans et al. 2011).
In traditional regression modeling, the relationships
between the response and explanatory variables need
to be pre-specified, and many assumptions are com-
monly made (e.g., normality, independence, and addi-
tivity) which are rarely satisfied in an ecological con-
text (Prasad et al. 2006; Evans et al. 2011). When the
number of explanatory variables is large, regression
models can overfit the data unless information criteria
such as the Akaiki information criterion or hypothesis
testing are employed to reduce the number of param-
eters (Burnham and Anderson 2002). Moreover, when
there are as many parameters as data points, a mul-
tiple regression model will fit the data exactly, but
fail to generalize well on new samples (Babyak 2004;
Faraway 2005). Because of these limitations, more
flexible nonparametric and algorithmic approaches are
gaining traction among ecologists; random forest (RF)
modeling (Breiman 2001), in particular, has recently
emerged as a compelling alternative to traditional
methods.

Multiple studies have demonstrated that RF models
often perform remarkably well in comparison to other
methods for ecological prediction. In an application to
predictive mapping of four different tree species in the
eastern USA, Prasad et al. (2006) found that RF mod-
eling outperformed three other statistical modeling
approaches (regression tree analysis, bagging trees,
and multivariate regression splines) in terms of the
correlations between the actual and predicted species
distributions. In their seminal article, Cutler et al.
(2007) applied RF classifiers to a wide range of eco-
logical data sets on invasive plant species, rare lichen
species, and cavity nesting bird habitats. Using cross-
validation, they demonstrated that the RF models out-
performed other commonly used classification meth-
ods such as logistic regression, classification trees, and
linear discriminant analysis. The RF models generally

demonstrated the most substantial improvement over
linear methods for data sets with strong interactions
among variables (e.g., invasive species). In Freeman
et al. (2015), RF was compared with stochastic gra-
dient boosting for modeling tree canopy cover over
diverse regions in the USA. They found that both mod-
els performed similarly in terms of independent test
set error statistics (e.g., mean-squared error), although
there were advantages to the RF approach since it was
less sensitive to tuning parameters and less prone to
overfitting.

While RF modeling has shown exceptional perfor-
mance on a variety of ecological data sets (Gislason
et al. 2006; Prasad et al. 2006; Cutler et al. 2007),
insights and guidance on variable selection techniques
for RF models of ecological processes are limited.
Typically, either a preselected set of predictor varia-
bles is used in the RF model (Prasad et al. 2006; Cutler
et al. 2007; Carlisle et al. 2009) or a reduced set of
variables is selected to improve model interpretability
and performance (Evans and Cushman 2009; Evans
et al. 2011; Rehfeldt et al. 2012; Hill et al. 2013). For
instance, in Cutler et al. (2007), no variable selection
was carried out; instead, the authors claimed that one
of the strengths of RF modeling is its ability to char-
acterize high-dimensional data with many collinear
variables. In other works, stepwise procedures have
been proposed whereby a sequence of RF models is
estimated by iteratively adding or removing variables
according to their importance measures, and the model
with optimal performance is selected. For instance,
this type of approach has been implemented by Evans
and Cushman (2009) to select RF models for pre-
dicting occurrence probabilities for conifer species in
northern Idaho, Rehfeldt et al. (2012) to reduce the
number of predictors for RF models of the geographic
distribution of biomes under various climate change
scenarios, and Hill et al. (2013) to select a RF model
of reference condition stream temperature with a small
set of optimally performing natural and anthropogenic
predictor variables.

With the growing popularity of RF modeling
among ecologists, and the availability and refine-
ment of large environmental data sets, questions
about model selection need to be more thoroughly
addressed. Along these lines, we investigate the appli-
cation of variable selection methods to RF models of
stream condition with many landscape features gen-
erated from a geographic information system (GIS).
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Our motivating covariate data set is the StreamCat
data set of Hill et al. (2016), which contains over 200
natural and anthropogenic landscape variables, readily
available for predictive modeling of stream catchment
attributes (e.g., estimating the probability of good
stream condition for a particular catchment). Using
these data, we seek to address the following questions:

• How can we reliably evaluate accuracy for RF
modeling when performing variable selection? Is
external validation necessary?

• How can we measure and assess the stability of
RF models to changes in the number of predictor
variables (i.e., landscape features)?

• What effect does variable selection have on the
spatial predictions generated by RF models at
new, unsampled locations?

For the stability analysis, we focus on spatial patterns
(i.e., prediction maps) and statistical summaries of the
RF predictions of stream condition, in addition to com-
monly used measures of model performance. Lastly, a
common incentive for using RF over other modeling
techniques is that it can handle many noisy variables
and is ostensibly robust to overfitting (Breiman 2001).
Thus, another question which we posit is whether
variable reduction necessarily improves the predictive
accuracy of RF models with large ecological data sets
such as StreamCat. While we focus on a particular
applied data set for this study, we also use simulations
to further generalize and support results.

Methods

Random forest modeling of stream condition

RF modeling is a statistical learning method that
builds many decision trees from bootstrap samples of
a data set. Predictions are made by averaging over the
predictions made by each tree in the forest. Since indi-
vidual trees often overfit the training data and result
in noisy predictions, averaging is a way to reduce the
variance of the model and improve prediction accu-
racy. Additionally, when building each tree, the RF
algorithm selects a random subset of predictors as can-
didates for splitting at each node. This has the effect of
decorrelating the trees since no single predictor vari-
able is allowed to dominate the top splits of trees in
the forest. As a special case, RF also includes bag-
ging trees, which use all predictors as candidates for

splitting (Breiman 1996a). Many empirical and simu-
lation studies have demonstrated that RF and bagging
trees outperform single tree models (Breiman 1996a;
2001; Lawrence et al. 2006; Strobl et al. 2009). RF
can be used for both regression and classification
problems; however, in this paper, we only focus on
classification tasks. For a more in-depth introduction
to RF and relevant theory, please see Hastie et al.
(2009).

For this study, we train a RF model using data from
the US Environmental Protection Agency’s 2008/2009
National Rivers and Stream Assessment (NRSA; (U.S.
Environmental Protection Agency 2016a)). NRSA
uses a spatially balanced sampling design to provide
an assessment of the ecological condition of rivers
and streams in the conterminous USA (CONUS)
and the extent to which they support healthy bio-
logical condition. The response data of interest for
the RF model is the categorization of n = 1365
NRSA sites (Fig. 1) as being in good or poor con-
dition according to the benthic macroinvertebrate
multimetric index (MMI). Macroinvertebrate assem-
blages provide one of the most reliable indicators of
a stream’s biological condition, and the MMI score
is a standardized sum of metrics indicative of the
health of the macroinvertebrate community (Stoddard
et al. 2008; U.S. Environmental Protection Agency
2016a). A detailed description of the development
of the macroinvertebrate MMI for the 2008/2009
NRSA survey is provided in Environmental Protection
Agency (2016b).

The predictor data for the RF model consist of
p = 212 variables from the StreamCat data set (Hill
et al. 2016). This data set contains natural and anthro-
pogenic landscape features for approximately 2.6 mil-
lion stream reaches within the CONUS. Variables are
at the local catchment (i.e., local drainage area for an
individual reach, excluding upstream drainage area)
and full watershed (catchment plus upstream catch-
ments) scales (Hill et al. 2016), and can be linked
to the National Hydrography Dataset Plus Version 2
(NHDPlusV2; McKay et al. (2012)).

Using the estimated RF model, we can predict the
probability that a stream at a new, unsampled loca-
tion is in good (or conversely poor) condition. The
predicted probability is computed as the proportion of
trees in the forest that vote that the new stream site is in
good condition. If the predicted probability is greater
than 0.5, the stream is classified as being in good
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condition, and poor condition otherwise. Note, since
the NRSA sample frame is limited to perennial streams,
we can only make valid predictions on approximately
42% of the catchments in StreamCat (i.e., approxi-
mately 1.1 million stream reaches; Hill et al. (2016,
2017).

Moreover, RF also provides an internal way to
assess model performance. When building a RF
model, a portion of the data (approximately one third)
is not contained in the bootstrap sample used to form
an individual tree; this is referred to as the out-of-bag
(OOB) data for that tree. In the context of modeling
stream condition, RF can predict the good/poor condi-
tion of site i for each tree in the forest where i is OOB
and take the majority vote as the OOB predicted con-
dition and the proportion of good votes as the OOB
predicted probability for that site. We can then repeat
this procedure to obtain the OOB predicted condition
for each of the i = 1, · · · , n stream sites. Measures of
model performance can be computed using these OOB
predictions. In this study, we focus on the following
measures: percent of sites correctly classified (PCC;
accuracy), percent of good sites correctly classified
(PGCC; sensitivity), percent of poor sites correctly
classified (PPCC; specificity), and the area under the
receiver operating character curve (AUC; Hosmer and
Lemeshow (2000), pp. 160–164). Note that the AUC
makes use of the OOB predicted probabilities and is
not dependent on selecting a probability threshold.

In this work, we implement RF in the R computing
language (R Core Team 2014) using the randomFor-
est package of Liaw and Wiener (2002). The two main
tuning parameters for estimating a RF model with this
package, and in general, are the following: ntree, the
number of trees used to build the model, and mtry, the
number of variables randomly selected at each node.
For classification tasks, the defaults are ntree = 500
and mtry = √

p, where p is the number of predictor
variables (Liaw and Wiener 2002). RF models are rel-
atively insensitive to choice of tuning parameters, and
the defaults perform well on most data sets (Liaw and
Wiener 2002; Cutler et al. 2007; Freeman et al. 2015).
Ideally, ntree should be chosen so that multiple runs
of RF produce consistent results, and it is suggested
to use more trees than the default when the num-
ber of predictor variables is large (Strobl et al. 2009;
Boulesteix et al. 2012). Generally, when the number
of noise variables far exceeds the number of infor-
mative variables, mtry values larger than the default

will perform better, since the informative predictors
are more likely to get sampled at each split (Goldstein
et al. 2011). However, when there are many infor-
mative variables of varying strengths, small values of
mtry tend to perform well since moderately impor-
tant predictors are given a chance of being selected for
each split, thereby preventing the most important pre-
dictors from having too much influence in the forest
(Boulesteix et al. 2012).

A sensitivity analysis demonstrated that the RF
models of stream condition were insensitive to the
selection of mtry (i.e., a wide range of candidate val-
ues performed similarly), and that values of ntree
greater than the default produced more consistent
results over multiple runs of RF (Supplement 1). Thus,
we adopt the default mtry = √

p and ntree = 3000 for
this study.

Overview of modeling decisions

Throughout this paper, we adhere to the modeling
decisions listed below. A comprehensive discussion of
each of these decisions is provided in Hill et al. (2017).

• A separate RF model is built for each of the nine
aggregated ecoregions (Fig. 1; Omernik (1987)).
Separate models are used instead of one national
model since the reference sites used to create
the MMI are specific to each ecoregion (U.S.
Environmental Protection Agency 2016a, b).

• The 2008/2009 NRSA classified the condition of
each sampled stream site as good, fair, or poor
according to the MMI score. However, we build
the RF models using only the good/poor sites with
fair sites removed. To empirically justify this deci-
sion, we compared the predictive performance
of a three-class (good/fair/poor) multinomial RF
model with a two-class (good/poor) binomial RF
model (Supplement 2). The fair sites were diffi-
cult to discriminate with a multinomial RF model
(percent of fair sites correctly classified < 25%),
and the binomial model had substantially better
predictive performance in terms of the various
accuracy rates (PCC, PGCC, and PPCC). The
multinomial RF modeling results suggest that the
fair sites do not stand out as a true intermedi-
ate (medium-level) class, but rather as an inde-
terminate class with a great deal of uncertainty
associated with sampled MMI scores.
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• RF modeling is known to be sensitive to class
imbalances (Chen et al. 2004; Khoshgoftaar et al.
2007; Evans and Cushman 2009; Khalilia et al.
2011; Freeman et al. 2012). The response data
considered in the study is moderately imbalanced:
60% of sampled sites are in poor condition, and
40% are in good condition. In certain ecoregions,
class imbalances are more severe (e.g., in the
Coastal Plains, only 16% of sites are in good
condition). To deal with this issue, we use a down-
sampling approach (Chen et al. 2004; Evans and
Cushman 2009): each tree in the ensemble is built
by drawing a bootstrap sample with the same
number of cases from the majority and minority
classes; in practice, the number of cases drawn
from each class is set to the size of the minor-
ity class. Without balancing, the RF model had
much lower predictive accuracy on the less preva-
lent good class than the more prevalent poor class.
Balancing the RF model with the down-sampling
approach improved predictive accuracy on the
good class, without substantially affecting overall
model performance (Supplement 2).

Variable importance

RF provides measures of variable importance (VI)
which can be used to rank the 212 predictors in our
model of stream condition. In this paper, we use the
permutation VI measure, which is computed as fol-
lows: For each tree b in the RF model keep the
misclassification error rate using the OOB data (i.e.,
percentage of sites in the OOB data incorrectly classi-
fied by tree b). Then randomly permute the values for
predictor variable j in the OOB data and recompute
the misclassification rate for each tree. The difference
in classification rates, averaged over all trees in the RF
model, is the permutation VI measure (Hastie et al.
2009).

Formally, using the notation of Genuer et al.
(2010), we can define the importance of each variable
j as

V I (Xj ) = 1

ntree

ntree∑

b=1

(errOOBb − err˜OOBb,j ),

(1)

where errOOBb is the OOB misclassification rate for
tree b, and err˜OOBb,j is the OOB misclassification

rate for tree b when the values for predictor Xj are
randomly permuted in the OOB data. While other
measures of VI are provided by RF (e.g., the Gini VI
measure gives the total decrease in the Gini index due
to splits of a given predictor, averaged over all trees),
we focus on the permutation VI since it is directly
based on the change in the predictive accuracy. More-
over, the permutation VI measure has been used in
the context of variable selection (Dı́az-Uriarte and De
Andres 2006; Evans and Cushman 2009; Genuer et al.
2010). Note, since a separate RF model is estimated
for each of the nine ecoregions, the VI measures for
the p = 212 StreamCat predictor variables are also
region specific (i.e., a separate VI ranking is com-
puted for each ecoregion). Descriptive statistics on the
regional VI measures for the StreamCat predictors can
be found in Supplement 3.

Stepwise model selection

The VI measure (Eq. 1) for RF can be used for the
purpose of model selection. In this paper, we use
the following stepwise selection procedure, which we
refer to as backward variable elimination (BVE):

1. Rank predictors according to their VI from the RF
model fit to the full set of p predictor variables.
Average VI scores over multiple runs of RF to get
a stable ranking.

2. Build a stepwise sequence of p RF models by dis-
carding, at each step, the least important remain-
ing variable according to the initial VI ranking.
That is, start with a RF model with all p predic-
tors, then remove the least important predictor and
estimate a RF model with p − 1 predictors; con-
tinue this process until a sequence of RF models
with p, p−1, ..., 1 predictors is constructed. Use a
standard metric to evaluate the OOB performance
of the RF model at each step.

3. Select the model which performs best according
to the metric (e.g., model with highest accuracy).

In practice, we average the VI scores over 10 runs
of RF to get an initial ranking and use the PCC
(accuracy) as the performance metric for selection.
Additionally, since we fit a separate RF model to each
of the nine ecoregions, we apply this model selection
procedure separately to each ecoregion. This results
in nine different variable reduced RF models, each
containing a different set of variables. Note that for
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the remainder of this article, RF models selected by
BVE will be referred to as “reduced” set models,
while RF models that use all predictor variables will
be referred to as “full” set models. We will also refer
to the nine ecoregions by their acronyms defined in
Fig. 1.

This type of iterative approach for selecting vari-
ables using the VI rankings has been discussed pre-
viously in Dı́az-Uriarte and De Andres (2006) and
Goldstein et al. (2010) for applications to gene selec-
tion problems; Evans and Cushman (2009) for species
distribution modeling; and Genuer et al. (2010) for
more general applications to high-dimensional data
sets. Note that in some of these works, variables are
removed in batches (instead of one at a time), and VI
measures are standardized.

Cross-validation

Multiple studies have emphasized the necessity for
external validation when applying a variable selection

method to a predictive model (Ambroise and McLachlan
2002; Svetnik et al. 2003; Hastie et al. 2009, pp. 245–
247). Ambroise and McLachlan (2002) describe how
a “selection bias” can be introduced when the data
used to select variables for a model is not indepen-
dent of the data used to assess the performance of
that model. Using two well-known genomic data sets,
Ambroise and McLachlan (2002) demonstrate that an
over-optimistic error rate is obtained when the val-
idation data is not external to the variable selection
procedure.

As a correction for selection bias, we apply
the following K-fold cross-validation (CV) method
described in Ambroise and McLachlan (2002) to the
BVE procedure for selecting a RF model:

1. Divide the data into K disjoint sets (folds), with
roughly the same number of observations in each
fold; in practice take K = 10.

2. For each fold k = 1, · · · , K:

(a) Take out fold k as an independent test set.
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Fig. 1 Locations of 1365 stream sites from the 2008/2009 National Rivers and Stream Assessment and their good/poor condition
class according to the benthic macroinvertebrate multimetric index (MMI)
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(b) Using the remaining K − 1 folds, select a RF
model using the BVE procedure.

(c) Use the selected model to make predictions
on the withheld fold k (i.e., for each stream
site in fold k, evaluate the predicted proba-
bility of good condition using the RF model
selected in (b)).

3. Accumulate the predictions made over the with-
held folds k = 1, · · · , K at each iteration; call
these the CV predictions.

4. Use the CV predictions to compute performance
measures (e.g., accuracy, sensitivity, specificity,
and AUC).

An important point to emphasize about the above
CV procedure is that, at each iteration in step 2, all
variable selection and estimation is performed using
the training data (K − 1 folds), while all predictions
are made on data on the external validation fold k.
In contrast, when relying on RF’s OOB predictions to
assess model performance, the same data used to rank
predictor variables, according to their VI measures, is
also used to estimate the accuracies of the RF models
in the BVE procedure. Hence, the CV predictions pro-
vide a more honest assessment of model performance
than the OOB predictions.

Note that in step 2(b), the OOB accuracy is still
used as the criterion to select a model on the K − 1
folds. Thus, we only use CV to evaluate the perfor-
mance of the BVE procedure and to detect whether the
OOB accuracy of the selected model is biased.

As an additional level of model validation, 71
NRSA sites (approximately 5% of the data) were with-
held, prior to any model fitting and selection, as an
independent test set. We use this test data by first
selecting a model with BVE using all the training data
(1365 NRSA sites; Fig. 1); then we evaluate the per-
formance of the selected RF model on the 71 withheld
sites. Due to the small size of the test set, the per-
formance metrics are aggregated nationally; that is,
performance metrics (PCC, AUC, etc.) are computed
with all 71 test set predictions, and not reported for
each ecoregion separately. Note that we only withheld
a small portion of the data so that most of the data
could be used for estimation. A larger withheld set
would compromise model performance for validation
purposes. We also use 10-fold CV to avoid just rely-
ing on one test/training split to externally validate the
RF models.

Stability of predictions

To illustrate the stability of the predictions generated
by RF, we examine the coefficient of determination
(R2) and root mean square deviation (RMSD) between
the predicted probabilities from the full 212 predictor
RF models and each of the k = 1, · · · , 211 predic-
tor RF models estimated during the BVE procedure.
The RMSD and R2 values are computed with the pre-
dictions made on the population of approximately 1.1
million catchments in the 2008/2009 NRSA sampling
frame.

Let ui for i = 1, · · · , N be the predicted probabili-
ties from the full set RF model with all 212 predictors,
where N is the number of catchments. Let vi,k for
i = 1, · · · , N be the predicted probabilities from the
RF model with k ∈ {1, · · · , 211} predictor variables
from the BVE algorithm. The Pearson correlation is
then given by

∑N
i=1(ui − ū)(vi,k − v̄k)√∑N

i=1(ui − ū)2
∑N

i=1(vi,k − v̄k)2
, (2)

where ū = 1
N

∑N
i=1 ui and v̄k = 1

N

∑N
i=1 vi,k . The

coefficient of determination (R2) is defined as the
Pearson correlation (Eq. 2) squared. In this context, R2

can be interpreted as a standardized measure (between
0 and 1) of linear association between the probabilities
from the full and k variable RF models, with val-
ues close to 1 indicating strong association and values
close to 0 indicating weak association. Geometrically,
the R2 value can be thought of as measuring deviation
from the least squares regression line in the scatter plot
between the predicted probabilities from the full and k

variable RF models.
The root mean square deviation is given by

√√√√ 1

N

N∑

i=1

(vi,k − ui)2. (3)

Since ui and vi,k are probabilities, the RMSD is
between 0 and 1; an RMSD value close to 0 indi-
cates close agreement between the predictions made
by the two RF models. Geometrically, the RMSD can
be thought of as measuring deviation from the 1-1 line
in the scatter plot between the predicted probabilities
from the full and k variable RF models. Note, since
the RF models are fit separately to each ecoregion, the
R2 and RMSD values are also evaluated regionally.
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Simulation study

We use simulated data to further generalize properties
of RF modeling investigated in the real data analy-
sis. Specifically, we use simulations to (1) evaluate
the robustness of RF modeling to including a large
number of predictor variables which are unrelated
to the response and (2) compare the performance of
reduced variable RF models, selected using the BVE
procedure, with RF models which use a full set of pre-
dictor variables. In the simulations, we emulate the
dimensions of large environmental data sets such as
StreamCat.

For this study, we use a standard simulated data
set named threenorm which was proposed in Breiman
(1998) and used in several articles on RF modeling
(e.g., Breiman 2001; Segal 2004). This simulated data
consist of a two-class (binary) response and d relevant
predictors. The response data is balanced: half of the
points are labeled class 1, and the other half are labeled
class 2. Predictor values for each class are generated
from d-dimensional multivariate normal distributions
with unit covariance matrix. Specifically, predictor
values for class 1 are generated with equal probabil-
ity from a multivariate normal distribution with mean
(a, a, ..., a) and from a multivariate normal distri-
bution with mean (−a, −a, ..., −a); predictor values
for class 2 are generated from a multivariate normal
distribution with mean (a, −a, a, −a..., a) and a =
2/

√
d . We implement this simulation using the func-

tion mlbench.threenorm from the R package mlbench
(Leisch and Dimitriadou 2010).

For the first simulation design, we evaluate the
robustness of RF modeling to including a large num-
ber of irrelevant features by adding noise predictor
variables to simulated threenorm data sets with d =
20 relevant predictors. We use d = 20 since this
was the dimension used in (Breiman 1998, 2001). The
noise predictors are generated from independent nor-
mal distributions with mean 0 and variance 1. Seven
simulation cases are considered by setting the number
of noise predictors k to 0, 50, 100, 150, 200, 250, and
300. This gives p = 20 + k total predictors for each
case. The dimensions of the StreamCat data set are
emulated by generating training sets of size 1000 for
each simulation case. Test sets of size 1000 are also
generated for each case, and the performance of the
RF models are quantified using the same metrics as the
stream condition models (PCC, sensitivity, specificity,

and AUC). All performance metrics are averaged over
20 repeated simulation runs.

The second simulation design considers two cases
where we generate threenorm data sets and vary the
proportion of relevant predictors. For the first case,
there are d = 50 relevant predictors and k = 150
noise predictors (i.e., 25% of predictors are relevant).
For the second case, there are d = 150 relevant pre-
dictors and k = 50 noise predictors (i.e., 75% of
predictors are relevant). For each case, we compare
the performance of full RF models which use all 200
predictors with reduced RF models selected using the
BVE procedure. Again, we generate training and test
sets of size 1000 and average the performance met-
rics (PCC, sensitivity, specificity, and AUC) over 20
repeated simulation runs. For all simulations, we also
use ntree = 1000 and the default mtry = √

p.

Results

Stepwise model selection

The accuracy curves for the BVE procedure applied
to each ecoregion show that the OOB accuracy of
the RF models remains steady until a small portion
of predictor variables remain (Fig. 2). For example,
the OOB accuracy for the NAP ecoregion fluctuates
steadily between 76 and 80% until about 25 variables
remain, at which point there is an increase in accuracy
followed by a sharp decline as additional variables
are removed. This general pattern, i.e., a bump in
OOB accuracy once a large portion of variables are
removed, is present in the accuracy curves for most
other ecoregions as well. Moreover, the OOB accu-
racies of the RF models tend to degrade rapidly near
the optimums (vertical lines in Fig. 2, which indicate
the reduced variable model selected by BVE). The
only exceptions are the UMW ecoregion, which shows
a sudden increase in OOB accuracy for the univari-
ate RF model, and the SAP ecoregion, which shows
a gradual decline in OOB accuracy once less than
75 variables remain. Since RF is generally known to
perform well with a large number of predictor vari-
ables, many of the effects on the OOB accuracy curves
produced by BVE are unexpected.

Table 1 further quantifies the results by display-
ing the OOB performance metrics for the full and
reduced variable set RF models. For all ecoregions, the
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Fig. 2 Percent of sites
correctly classified (PCC)
versus number of predictor
variables at each step of the
backward elimination
procedure. PCC is
computed on the out-of-bag
data for each random forest
model. The vertical line in
each panel denotes the
random forest model with
optimal PCC. Ecoregion
codes: Coastal Plains
(CPL), Northern
Appalachians (NAP),
Northern Plains (NPL),
Southern Appalachians
(SAP), Southern Plains
(SPL), Temperate Plains
(TPL), Upper Midwest
(UMW), Western Mountains
(WMT), and Xeric (XER)
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selection procedure substantially reduces the number
of variables. Variable reduction also leads to sizable
increases in OOB accuracy (up to about 10 percent-
age points) and AUC for some ecoregions (e.g., SPL,
WMT, and XER). Although for other ecoregions, such
as NPL and SAP, the full and reduced models perform
similarly in terms of the OOB performance met-
rics. Again, the UMW ecoregion is unusual since the
reduced model contains only one variable, watershed
area in square kilometers, and has much higher accu-
racy than any of the other models estimated during the
stepwise procedure.

Table 1 suggests choosing the reduced models since
they have higher OOB accuracy. However, Fig. 2 also
shows that the reduced set RF models, selected to
optimize OOB accuracy, generally occur in places
on the accuracy curves that are unstable. That is,
small changes in the number of predictors around the
reduced set models (either by decreasing or increas-
ing) result in models that have very different OOB
accuracies. The full set RF models, on the other hand,
occur on much more stable places on the accuracy
curves. Moreover, in the next section, we show that
when data external to the variable selection process
are used to assess accuracy, there is no significant

difference in performance between the full and
reduced set models.

Cross-validation

The full and reduced set RF models perform simi-
larly in terms of the 10-fold CV performance metrics
(Table 2). For instance, the full RF models perform
as well or better than the reduced models in terms
of CV accuracy and AUC for most ecoregions (NAP,
NPL, SAP, SPL, TPL, and XER). For the other ecore-
gions (CPL, UMW, and WMT), the difference in CV
accuracy between the reduced and full RF models is
marginal (maximum difference is approximately 4%).
In contrast, when using RF’s internal OOB data to
measure model performance (Table 1), the difference
in accuracy and AUC between the reduced and full
models can be substantial (over 10%). Hence, the
OOB accuracy estimates are upwardly biased and give
an over-optimistic impression of how well the reduced
RF models are performing.

To further illustrate this issue of selection bias,
Fig. 3 shows the difference in the OOB accuracies
(Table 1; PCC) and CV accuracies (Table 2; PCC) for
the full and reduced RF models for each ecoregion.
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Table 1 Out-of-bag performance metrics for the full and reduced
variable random forest models for each ecoregion

Region Model Nvars PCC PGCC PPCC AUC

CPL Full 212 0.80 0.68 0.83 0.83

Reduced 11 0.84 0.81 0.84 0.87

NAP Full 212 0.77 0.67 0.82 0.85

Reduced 9 0.84 0.76 0.89 0.87

NPL Full 212 0.82 0.80 0.83 0.86

Reduced 16 0.85 0.86 0.85 0.89

SAP Full 212 0.76 0.66 0.81 0.81

Reduced 86 0.78 0.70 0.82 0.83

SPL Full 212 0.72 0.74 0.69 0.80

Reduced 13 0.81 0.81 0.81 0.86

TPL Full 212 0.78 0.78 0.78 0.86

Reduced 12 0.86 0.85 0.87 0.91

UMW Full 212 0.71 0.74 0.63 0.73

Reduced 1 0.79 0.82 0.73 0.81

WMT Full 212 0.71 0.70 0.72 0.81

Reduced 22 0.82 0.77 0.88 0.84

XER Full 212 0.68 0.58 0.74 0.80

Reduced 11 0.79 0.74 0.82 0.84

Reduced model variables were selected to optimize out-of-bag
accuracy using a backward variable elimination approach

Nvars number of variables, PCC percent of sites correctly
classified (accuracy), PGCC percent of good sites correctly
classified (sensitivity), PPCC percent of poor sites correctly
classified (specificity), AUC area under the receiver operat-
ing characteristic curve, CPL Coastal Plains, NAP Northern
Appalachians, NPL Northern Plains, SAP Southern Appalachi-
ans, SPL Southern Plains, TPL Temperate Plains, UMW Upper
Midwest, WMT Western Mountains, XER Xeric

For the reduced set models, a clear bias is apparent as
the OOB accuracy is between 4 and 10% higher than
the CV accuracy for each ecoregion RF model. For
the full set models, on the other hand, no such bias is
apparent since the difference in accuracies fluctuates
around 0%.

The nationally aggregated performance metrics
also provide evidence of selection bias (i.e., the aggre-
gated OOB metrics are over-optimistic for the RF
models selected using BVE). Table 3 shows the per-
formance results for the full and reduced RF models
on the test data (71 withheld NRSA sites); nationally
aggregated OOB and 10-fold CV performance metrics
are also shown for comparison (PCC, PGCC, PPCC,
and AUC are calculated on the combined set of 1365
OOB and CV predictions generated from the nine

Table 2 Cross-validation (CV) performance metrics for the full
and reduced variable random forest models for each ecoregion

Region Model AvgNvars PCC PGCC PPCC AUC

CPL Full 212.0 0.78 0.62 0.81 0.82

Reduced 17.9 0.79 0.70 0.80 0.84

NAP Full 212.0 0.77 0.69 0.82 0.83

Reduced 8.8 0.77 0.62 0.86 0.82

NPL Full 212.0 0.82 0.78 0.85 0.87

Reduced 39.9 0.77 0.71 0.80 0.82

SAP Full 212.0 0.74 0.62 0.80 0.80

Reduced 61.1 0.69 0.51 0.78 0.76

SPL Full 212.0 0.75 0.79 0.69 0.80

Reduced 12.4 0.75 0.76 0.73 0.80

TPL Full 212.0 0.79 0.79 0.79 0.87

Reduced 21.6 0.79 0.81 0.78 0.86

UMW Full 212.0 0.67 0.71 0.57 0.73

Reduced 12.0 0.71 0.77 0.57 0.74

WMT Full 212.0 0.71 0.71 0.70 0.79

Reduced 20.8 0.75 0.71 0.79 0.80

XER Full 212.0 0.69 0.62 0.74 0.80

Reduced 22.1 0.68 0.64 0.70 0.75

Performance metrics are computed using 10-fold CV with val-
idation folds external to the variable selection process. The
average number of predictor variables (AvgNvars) is provided
since at each iteration of the CV procedure, a different portion
of the data is used as the training set for selecting a random
forest model

PCC percent of sites correctly classified (accuracy), PGCC
percent of good sites correctly classified (sensitivity), PPCC
percent of poor sites correctly classified (specificity), AUC area
under the receiver operating characteristic curve, CPL Coastal
Plains, NAP Northern Appalachians, NPL Northern Plains, SAP
Southern Appalachians, SPL Southern Plains, TPL Temperate
Plains, UMW Upper Midwest, WMT Western Mountains, XER
Xeric

regional models). The full and reduced RF models per-
form similarly on the withheld test data, and in terms
of aggregated CV metrics; only the aggregated OOB
metrics show a gain in performance due to variable
reduction. While the test set is small, this perhaps sug-
gests that the OOB accuracy estimates for the reduced
model will fail to generalize to new locations.

Model comparisons and stability assessment

Several important distinctions stand out between the
maps of the predicted probability of good stream con-
dition for the full and reduced variable set RF models
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Fig. 3 Difference between out-of-bag (OOB) and 10-fold
cross-validation (CV) accuracies (percent of sites correctly clas-
sified) for the full and reduced variable random forest models
for each ecoregion. Ecoregion codes: Coastal Plains (CPL),

Northern Appalachians (NAP), Northern Plains (NPL), South-
ern Appalachians (SAP), Southern Plains (SPL), Temperate
Plains (TPL), Upper Midwest (UMW), Western Mountains
(WMT), and Xeric (XER)

(Supplement 4). First, while the overall patterns are
similar, the predicted probabilities appear more
intense in the map for the reduced set model. That is,
when compared to the full set model, sites predicted
to be in good condition (blue) appear to have higher
probabilities (closer to 1), and sites predicted to be in
poor condition (red) appear to have lower probabili-
ties (closer to 0). The histogram densities of predicted
probabilities (Fig. 4) support this comparison, since
the probabilities from the reduced set models are more
uniformly distributed and have greater density around
0 and 1 than the full set model. Second, the predictions
for UMW are unusual in the map for the reduced set

Table 3 Nationally aggregated model performance metrics for
the full and reduced variable random forest models

Model PCC PGCC PPCC AUC

Test Full 0.746 0.613 0.850 0.812

Reduced 0.775 0.613 0.900 0.803

OOB Full 0.753 0.707 0.783 0.835

Reduced 0.820 0.787 0.841 0.865

CV Full 0.749 0.707 0.776 0.828

Reduced 0.745 0.693 0.779 0.815

For comparisons, performance metrics are computed using the
test set of 71 withheld stream sites (Test), the 1365 out-of-
bag (OOB) predictions, and the 1365 10-fold cross-validation
(CV) predictions. PCC is the percent of sites correctly classified
(accuracy), PGCC is the percent of good sites correctly clas-
sified (sensitivity), PPCC is the percent of poor sites correctly
classified (specificity), and AUC is the area under the receiver
operating characteristic curve

model, since this model only has one predictor vari-
able (watershed area), and the spatial patterns in the
predicted probabilities are very different than the full
set model. Note that the prediction sites in both maps
are only made for perennial streams (as designated
in NHDPlusV2) since the 2008/2009 NRSA sample
frame is limited to these types of streams.

While the intensity of the probability scales
between the two models are different, many of the
overall spatial trends are still similar for most ecore-
gions. One explanation for the different intensity
scales is that the reduced set RF models focus on
only the most important variables and, therefore, tend
to predict probabilities that are closer to 1 or 0 than
would be when other, less important, variables are
taken into account.

Even though the overall spatial trends appear simi-
lar, the (binned) scatter plots (Fig. 5) reveal substantial
differences in the values for the predicted probabilities
for the full versus reduced set RF models. In particular,
the predicted probabilities for the reduced set UMW
model shows almost no association with the full set
model. Only the SAP ecoregion shows strong corre-
spondence between the two models; not surprisingly,
the reduced SAP model has 86 predictors, which is
substantially more than any other reduced ecoregion
model (Table 1).

To illustrate the stability of the models, we exam-
ine the coefficient of determination (R2) and RMSD
between the predicted probabilities from the full set
model and each RF model estimated during the BVE
procedure (Figs. 6 and 7, respectively). The R2 curves
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Fig. 4 Histogram density
plots of the random forest
predicted probabilities of
good stream condition from
the full and reduced
variable set models. The
predicted probabilities in
each density plot are on the
population of 1.1 million
catchments within the
sampling frame for the
2008/2009 National Rivers
and Streams Assessment
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Fig. 5 Scatter plots of the predicted probabilities of good
stream condition from random forest (RF) models with full
versus reduced variable sets. Since there are a very large num-
ber of prediction sites within each ecoregion, points are binned
in the scatter plots. The black line in each panel is the 1-1
line. The prediction sites for the RF models are all 1.1 million

catchments within the sampling frame for the 2008/2009
National Rivers and Streams Assessment. Ecoregion codes:
Coastal Plains (CPL), Northern Appalachians (NAP), Northern
Plains (NPL), Southern Appalachians (SAP), Southern Plains
(SPL), Temperate Plains (TPL), Upper Midwest (UMW), West-
ern Mountains (WMT), and Xeric (XER)
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Fig. 6 Coefficient of determination (R2; Eq. 2) versus number
of predictor variables from the backward elimination proce-
dure. The R2 values in each panel are between the predicted
probabilities from the random forest model with the full set
of predictor variables, and the predicted probabilities generated
by the random forest models as variables are removed step-
wise. The predicted probabilities used to compute the R2 values
are on the population of 1.1 million catchments within the

sampling frame for the 2008/2009 National Rivers and Streams
Assessment. The vertical line in each panel denotes the random
forest model selected to optimize out-of-bag accuracy (Fig. 2).
Ecoregion codes: Coastal Plains (CPL), Northern Appalachians
(NAP), Northern Plains (NPL), Southern Appalachians (SAP),
Southern Plains (SPL), Temperate Plains (TPL), Upper Midwest
(UMW), Western Mountains (WMT), and Xeric (XER)

(Fig. 6) reveal that models with less than 25 predic-
tor are, generally, substantially different than the full
set model in terms of R2. Interestingly, models with
more than 50 predictors are, generally, very similar
to the full set model in terms of R2 values. This is
consistent with the claim that RF is robust to adding
many noisy variables (Breiman 2001), since the 75
variable RF models, for example, are similar to the full

212 predictor variable models in terms of the associa-
tions between the predicted probabilities. The R2 plots
also suggest that the models selected by BVE (verti-
cal lines) generally occur in places on the R2 curves
that are unstable. That is, although these models opti-
mize OOB accuracy, small changes in the number of
predictors around the selected model tend to result in
substantial changes in the predicted probabilities as
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Fig. 7 Root mean square deviation (RMSD; Eq. 3) versus
number of predictor variables from the backward elimination
procedure. The RMSD values in each panel are between the
predicted probabilities from the random forest model with the
full set of predictor variables, and the predicted probabili-
ties generated by the random forest models as variables are
removed stepwise. The predicted probabilities used to com-
pute the RMSD values are on the population of 1.1 million

catchments within the sampling frame for the 2008/2009
National Rivers and Streams Assessment. The vertical line in
each panel denotes the random forest model selected to optimize
out-of-bag accuracy (Fig. 2). Ecoregion codes: Coastal Plains
(CPL), Northern Appalachians (NAP), Northern Plains (NPL),
Southern Appalachians (SAP), Southern Plains (SPL), Temper-
ate Plains (TPL), Upper Midwest (UMW), Western Mountains
(WMT), and Xeric (XER)

quantified by R2. The RMSD curves (Fig. 7) reveal
similar patterns in the RF predictions as the R2 curves
(Fig. 6). That is, RF models with more than 50 vari-
ables have small RMSDs (< 0.08) and are thus similar
to the full set model, while RF models with less than
25 variables have substantially larger RMSD values
and show instabilities.

Simulation study

The performances of RF on the simulated threenorm
data sets were robust to inclusion of many irrelevant
features (Table 4). That is, the RF models which con-
tained k = 50, · · · , 300 noise predictors retained test
set performance comparable to the baseline case with
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Table 4 Performance summary of random forest models on
simulated threenorm data sets with 20 relevant predictors and k

noise predictors

k PCC Sens. Spec. AUC

Test 0 0.857 0.854 0.861 0.936

OOB 0 0.862 0.862 0.862 0.937

Test 50 0.849 0.841 0.858 0.929

OOB 50 0.848 0.832 0.864 0.927

Test 100 0.844 0.835 0.853 0.926

OOB 100 0.847 0.842 0.850 0.925

Test 150 0.843 0.835 0.852 0.924

OOB 150 0.833 0.827 0.838 0.915

Test 200 0.837 0.831 0.843 0.920

OOB 200 0.834 0.827 0.840 0.912

Test 250 0.836 0.843 0.831 0.917

OOB 250 0.829 0.833 0.825 0.909

Test 300 0.834 0.827 0.842 0.918

OOB 300 0.828 0.822 0.832 0.909

Performance metrics were computed using independent test sets
of size 1000 (Test) and the out-of-bag data (OOB), and averaged
over 20 simulation runs

PCC percent of observations correctly classified, Sens. percent
of observations in class 1 correctly classified, Spec. percent of
observations in class 2 correctly classified, AUC area under the
receiver operating characteristic curve

just the 20 relevant predictors and no noise (k = 0).
Inclusion of up to 300 noise predictors resulted in
test set performance rates (PCC, sensitivity, speci-
ficity, and AUC) which were within 1–3% of the
baseline case (k = 0). Moreover, performance rates
computed with the OOB data were generally within
1% of those computed with independently generated
test data. Thus, for all simulation cases, RF’s internal
OOB metrics closely approximated the true test set
performance metrics.

Simulation results comparing the full and reduced
variable RF models are presented in Table 5. There
was not a substantial difference between the test set
performances (PCC, sensitivity, specificity, and AUC)
of the full and reduced models. However, when 25%
of the variables were relevant (d = 50, k = 150),
the reduced model performed slightly better on the
test data; and when 75% of the variables were relevant
(d = 150, k = 50), the full model performed slightly
better on the test data. The OOB performance met-
rics for the reduced RF models, selected using BVE,
were over-optimistic for both cases (i.e., the OOB

Table 5 Performance summary of full and reduced variable
random forest models on simulated threenorm data sets with d

relevant predictors and k noise predictors

d k Model PCC Sens. Spec. AUC

Test 50 150 Full 0.805 0.807 0.806 0.893

OOB 50 150 Full 0.794 0.793 0.793 0.877

Test 50 150 Reduced 0.828 0.829 0.828 0.909

OOB 50 150 Reduced 0.840 0.838 0.842 0.909

Test 150 50 Full 0.768 0.763 0.777 0.859

OOB 150 50 Full 0.748 0.739 0.753 0.833

Test 150 50 Reduced 0.755 0.755 0.757 0.838

OOB 150 50 Reduced 0.795 0.798 0.790 0.865

Performance metrics were computed using independent test sets
of size 1000 (Test) and the out-of-bag data (OOB), and averaged
over 20 simulation runs

PCC percent of observations correctly classified, Sens. percent
of observations in class 1 correctly classified, Spec. percent of
observations in class 2 correctly classified, AUC area under the
receiver operating characteristic curve

performance metrics were higher than those computed
with independent test data). This bias in the OOB per-
formance metrics was more severe for the case when
75% of the variables were relevant (e.g., there was a
4% difference in the PCC computed using the OOB
and test data). The OOB metrics for the full RF model,
on the other hand, were slightly conservative and more
closely approximated the true test set performance
metrics.

Discussion

Comparison with other studies

A major result of this work is that the RF models of
stream condition showed no significant improvement
in predictive performance as a result of variable selec-
tion using the backward elimination approach. Studies
with other data sets have also suggested that robust-
ness to overfitting and the ability to handle many noise
variables without the need for variable selection are
more general properties of RF modeling. Below, we
list several examples:

• Svetnik et al. (2003) applied RF modeling to
classify 186 drug compounds (as P-gp substrates
or non-substrates) with a set of 1522 atom pair
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descriptors. Using an extensive cross-validation
approach, they found no improvement in the
performance of the RF classifier as a result of
variable selection. However, the results suggested
that the number of variables could be cut down to
about 190 without degradation of performance.

• Dı́az-Uriarte and De Andres (2006) applied RF
modeling to multiple high-dimensional genetic
data sets, each with thousands of genes (predic-
tor variables) and typically less than 100 patients
(observations). On all data sets, the performance
of RF when performing variable selection was
comparable to RF without variable selection.
Moreover, RF with no variable selection and mini-
mal tuning also performed comparably with alter-
native classifiers (e.g., support vector machines,
k-nearest neighbors).

• Biau (2012) provided analytic and simulation
results suggesting that with a sufficiently large sam-
ple size, the performance of RF does not depend
on the number of pure noise variables.

Note that the performance metrics in these studies are
reliable since selection bias was accounted for by run-
ning the variable selection process separately from
the data used to validate the model. Thus, empirical
results on a variety of data sets suggest that variable
selection procedures for RF models generally do not
improve predictive performance, and that RF has built-
in mechanisms which allow it to perform well with
high-dimensional data sets (e.g., by probing the pre-
dictor space at each split and averaging over many
trees).

Our study has also provided several unique method-
ological contributions not addressed in the previously
mentioned works. First, we assessed variable selection
for RF modeling using a large environmental data set,
which has dimensions and properties different than the
high-dimensional data sets analyzed in Svetnik et al.
(2003) and Dı́az-Uriarte and De Andres (2006). Sec-
ond, since the StreamCat predictors are spatially refer-
enced, we had the opportunity to produce maps of the
predicted probabilities. Assessment of the prediction
maps revealed instabilities in the variable selection
procedure which previous works had not addressed;
for instance, we found that in certain ecoregions
(e.g., UMW), the prediction maps were surprisingly
different between the full and reduced RF models,

even though CV accuracy was similar. Third, we
demonstrated that RF’s OOB metrics can be mis-
leading when applying a stepwise variable selection
procedure, and we provided empirical evidence sup-
porting the need for external validation for reduced
variable RF models.

We also believe that our study is the first to demon-
strate that there is actually a cost to variable selection
in RF models, at least when using the OOB accuracy
as a selection criterion. Specifically, predictions from
the selected models are unstable; that is, small changes
in the number of predictor variables have substantial
effects on the predicted probabilities once variables
have been reduced to a small proportion of the orig-
inal set. Further, the R2 and RMSD curves (Figs. 6
and 7) reveal that larger sets of predictor variables are
necessary to obtain predicted probabilities which have
values similar to the full set RF model, and most other
RF models estimated in the sequence. The 10-fold
CV and test set results also indicate that the predic-
tor variables selected by optimizing OOB accuracy are
biased towards the sample; thus, the selection routine
may fail to retain many predictors which are impor-
tant to retain when making predictions at unsampled
locations.

Preselection of predictor variables

While StreamCat is large for an environmental data
set, predictors were selected to be indicative of stream
condition based on two criteria: First, a literature
review of natural and anthropogenic watershed char-
acteristics that had been linked to instream biological
and habitat condition (e.g., soils, lithology, runoff,
topography, roads, dams, mines, urban and agricul-
tural land use, and imperviousness of man-made sur-
faces; Hill et al. 2016, p. 123). Second, a search
for publicly available landscape layers hypothesized
to also characterize watersheds (e.g., air tempera-
ture and precipitation, N and P sources, and forest
cover change; Hill et al. 2016, p. 123). Many of
these explanatory variables are correlated with each
other; for instance, StreamCat contains eight temper-
ature variables with pairwise correlations exceeding
0.77. Each of the eight temperature variables pro-
vides slightly different information covering different
spatial scales (watershed versus catchment) and time
durations (30-year average versus 2008/2009 NRSA
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sampling period). For traditional regression modeling,
including many collinear predictors can cause serious
issues in parameter estimation and statistical infer-
ences (Faraway 2005). However, since RF averages
over many trees and randomly selects variables for
each split, the influence of groups of correlated vari-
ables gets spread out over the forest (Cutler et al. 2007).
Including all 212 StreamCat variables thus provides
the RF algorithm with an opportunity to comprehen-
sively explore the predictor space and model complex
interactions between variables that simpler models,
with fewer variables, would not be able to exploit.

Model validation and computational considerations

One appealing feature of RF modeling is that the
OOB data provide a convenient way to assess model
performance, without the need for external validation
(either by K-fold CV or a withheld test set). However,
the results of this study demonstrated that external
validation is necessary when applying variable selec-
tion for RF models with the VI rankings. The OOB
performance metrics gave the misleading impression
that variable reduction significantly improved the RF
models, whereas the 10-fold CV performance metrics,
which used validation data (folds) completely exter-
nal to the variable selection process, showed no such
improvements as a result of variable reduction (Fig. 3).
Nevertheless, for the full set model, the OOB and CV
performance metrics agreed closely, suggesting that
the OOB performance metrics are reasonable as long
as no variable reduction is performed using the VI
rankings.

The CV procedure of Ambroise and McLachlan
(2002), which corrects for selection bias when assess-
ing model performance, is also computationally
expensive since it requires completely embedding
variable selection within the model validation pro-
cedure. For our implementation, we estimated p =
212 RF models for each of the 10 training folds
(i.e, 19,080 RF models total for the nine ecoregions).
With parallelization over five cores, this task took
1.7 h. The nine ecoregion RF models without vari-
able selection, on the other hand, took only 1.3 min to
estimate without any parallelization. Hence, variable
selection imposed additional computational costs on
RF modeling that limited reproducibility and resulted
in negligible changes in performance.

Robustness of random forests to overfitting

Simulations provided empirical evidence suggesting
that RF models are robust to overfitting when using
data sets with similar dimensions as StreamCat. A sta-
tistical model which overfits will adapt too closely to
random characteristics in a sample and fail to gen-
eralize to new samples from the population (Babyak
2004; Strobl et al. 2009). That is, overfit models have
low error on the training set, but high error on test
sets (Breiman 1996b). Simulations are ideal for inves-
tigating this issue since models can be validated using
large, independently generated test sets. The simula-
tions demonstrated that the test set performance of
the full RF model was not substantially affected by
including many random noise variables (Table 4).
There was also no substantial difference between the
test set performance of the full and reduced RF mod-
els (Table 5). Furthermore, in all simulations, the OOB
performance metrics for the full RF model closely
approximated performance metrics computed using
the test data. This distinguishes RF from other mod-
eling approaches such as linear regression where in-
sample performance measures such as the coefficient
of determination (R2) can be misleading for models
with a large number of parameters, and other mea-
sures (e.g., adjusted-R2, AIC) are needed to correct
for model complexity.

Conclusions

In this paper, we compared two types of RF models for
good/poor biological stream condition in each ecore-
gion: a full set model, which used all 212 landscape
predictors from the StreamCat data set, and a reduced
set model, which was selected to optimize OOB accu-
racy by removing variables stepwise according to their
importance measures. We validated RF models using a
10-fold CV procedure with validation folds external to
the variable selection process. According to standard
metrics (e.g., PCC and AUC), we found no substan-
tial difference between the CV performance of the
full and reduced RF models. In fact, in most ecore-
gions, the CV performance of the full RF model was
equivalent to or slightly better than the reduced model.
For the stability assessment, we investigated how vari-
able reduction affected the maps of the RF predicted
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probabilities on the population of approximately 1.1
million perennial stream reaches within the CONUS.
With various statistics (R2, RMSE), we evaluated
deviations between the predicted probabilities from
the full RF model and each RF model estimated during
the stepwise variable reduction procedure. According
to these diagnostics, we found that the RF models
with no variable reduction and minimal tuning were
surprisingly robust. The results suggested that many
noisy predictors (i.e., predictors with moderate to low
VI measures) could be included in a RF model with-
out substantially affecting the predicted probabilities
(e.g., the 75 variable and 212 variable RF models pro-
duced similar predictions). The reduced RF models,
on the other hand, which were selected to optimize
OOB accuracy, tended to contain too few variables;
hence, adding or removing a small number of vari-
ables around the selected model often resulted in
substantial fluctuations in the predicted probabilities.

The assessment of both the StreamCat and simu-
lated data sets demonstrated that a stepwise variable
selection procedure for RF models can cause over-
optimistic OOB performance metrics. In the analysis
of the StreamCat data set, we found that the OOB met-
rics for the reduced models were substantially higher
than those computed using 10-fold CV, with validation
folds external to the variable selection procedure. In
the analysis of large simulated data sets, we also found
that the OOB metrics for the reduced RF models were
higher than those computed using independently gen-
erated test sets. Thus, if a stepwise algorithm is used to
select variables for a RF model, we recommend exter-
nally validating that RF model (e.g., by withholding
an independent validation set, or using the K-fold CV
procedure discussed in this study).

While variable selection is often an essential part
of developing a statistical model in a traditional lin-
ear regression framework, in this study, we found
the application of variable selection methods for RF
models unnecessary. However, while the full set RF
model performed well with our data set, we do not
advocate including as many variables as possible as
a general strategy for RF modeling. The preselec-
tion of variables of hypothesized relevance to the
ecological process at hand may be a very important
step in developing an adequate RF model. Indeed,
the results of this study demonstrate that the appli-
cation of a variable selection method to a RF model

needs to be carefully examined, as we found numerous
issues when evaluating the accuracy and stability of
the RF models selected with the backward elimination
approach. When considering this, however, accuracy
alone should not be the sole criterion; rather, trade-offs
between accuracy and stability need to be considered.
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